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Abstract. Variational methods are applied to a single polyelectrolyte chain. The polymer is modeled as
a Gaussian chain with screened electrostatic repulsion between all monomers. As a variational Hamilto-
nian, the most general Gaussian kernel, including the possibility of a classical or mean polymer path,
is employed. The resulting self-consistent equations are systematically solved both for large and small
monomer-monomer separations along the chain. In the absence of screening, the polymer is stretched on
average. It is described by a straight classical path with Gaussian fluctuations around it. If the electrostatic
repulsion is screened, the polymer is isotropically swollen for large separations, and for small separations
the polymer correlation function is calculated as an analytic expansion in terms of the monomer-monomer
separation along the chain. The electrostatic persistence length and the electrostatic blobsize are inferred
from the crossover between distinct scaling ranges. We perform a global analysis of the scaling behavior
as a function of the screening length ξ and electrostatic interaction strength β = `B/A

2, where `B is the
Bjerrum length and A is the distance of charges along the polymer chain. We find three different scaling
regimes. i) A Gaussian-persistent regime with Gaussian behavior at small, persistent behavior at inter-
mediate, and isotropically swollen behavior at large length scales. This regime occurs for weakly charged
polymers and only for intermediate values of the screening length. The electrostatic persistence length
`P is defined as the crossover length between the persistent and the asymptotically swollen behavior and
is given by `P ∼ β1/3ξ2 ln−2/3[β1/3ξ] and thus disagrees with previous (restricted) variational treatments
which predict a linear dependence on the screening length ξ. ii) A Gaussian regime with Gaussian behavior
at small and isotropically swollen behavior at large length scales. This regime occurs for weakly charged
polymers and/or strong screening, and the electrostatic repulsion between monomers only leads to sub-
fluent corrections to Gaussian scaling at small separations. The concept of a persistence length is without
meaning in this regime. iii) A persistent regime, where the chain resembles a stretched rod on intermediate
and small scales. Here the persistence length is given by the original Odijk prediction, `P ∼ βξ2, if the
overstretching of the chain is avoided. We also investigate the effects of a finite polymer length and of
an additional excluded-volume interaction, which modify the resultant scaling behavior. Applications to
experiments and computer simulations are discussed.

PACS. 36.20.-r Macromolecules and polymer molecules – 61.25.Hq Macromolecular and polymer solutions;
polymer melts; swelling – 87.15.-v Molecular biophysics

1 Introduction

Charged polymers have been of central interest to experi-
mentalists and theorists for some time now [1,2]. Although
interactions between polyelectrolytes in a many-chain sys-
tem will always play an important role experimentally
(mostly because the overlap concentration is fairly low
for these systems), the case of an isolated polyelectrolyte
has proven to be a challenging and rewarding research
area by itself, with many questions still unanswered [3].
It is unlikely that a full understanding of the behavior of
polyelectrolyte solutions is possible without prior compre-
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hension of the single-chain properties. This observation
motivates the present work.

It was realized very early that the electrostatic re-
pulsion between charged monomers leads to a stretch-
ing of the polymer chain [4]. This was corroborated
by renormalization-group calculations [5], which demon-
strated that the swelling exponent ν is exactly given by
ν = 2/(d − 2) in dimensions 4 < d < 6 and (for a non-
stretchable chain) ν = 1 for d < 4. The effect of a fi-
nite screening length ξ was then shown to lead to a fi-
nite electrostatic persistence length `P , scaling with the
square of the screening length in the case of rigid poly-
mers [6–8]. These predictions were later extended to flex-
ible polymers, in which case the electrostatic repulsion
between charged monomers can lead to a linear array
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of Gaussian blobs, and the persistence length acquires
an additional prefactor due to the rescaled charge den-
sity, but otherwise shows the same quadratic dependence
on the screening length [9–12]. The latter results were
challenged by a number of variational calculations [13–
15], all leading via different approximations to a lin-
ear screening-length-dependence of the persistence length.
Experiments [2,16,17] and computer simulations [18–23]
show a more complex behavior of the persistence length,
but tend to favor a linear dependence on the screening
length for intrinsically flexible polymers. Two other the-
oretical works deserve to be mentioned: a heuristic the-
oretical model based on the worm-like chain model and
with the persistence length as the only variational param-
eter matched experimental results very nicely [24], and
a very recent field-theoretic treatment of the polyelec-
trolyte chain with screened interactions yields an inter-
mediate scaling regime where the persistence length de-
pends in a sublinear fashion on the screening length [25].
Clearly, the discrepancies among existing theories, simu-
lations, and experiments calls for clarification. Although
we are far from asserting that we have fully solved the
problem, we offer a possible explanation for the dis-
crepancy between previous variational calculations [13–
15] and the other approaches based on extensions of
the original Odijk calculation [9–12]: the previous vari-
ational calculations were too restrictive in that they as-
sumed a non-swollen isotropic behavior at large length
scales; relieving this constraint, we find agreement with
the original predictions by Odijk (for rigid polymers)
and by Khokhlov and Khachaturian (for flexible poly-
mers). This conclusion is confirmed by recent calcula-
tions by Ha and Thirumalai, who applied the uniform-
expansion method to the single polyelectrolyte chain. As
is well-known, this variational technique captures chain
swelling at large length scales, and indeed the authors
find a quadratic dependence of the electrostatic persis-
tence length on the screening length both for stiff and for
very flexible polymers [26].

In this article we apply a general form of des Cloi-
zeaux’s Gaussian variational method [27] to the problem
of a single polyelectrolyte. Previous applications of this
method to the case of unscreened Coulomb interactions
reproduced the exact swelling exponent ν = 2/(d− 2) for
4 < d < 6 [28], which shows that this variational method
works extremely well for long-ranged interactions. Even
for screened interactions there is numerical evidence that
this method is rather accurate [29], and therefore should
be a suitable technique to study both screened and un-
screened interactions.

In Section 2 we introduce the Gaussian polymer model
and calculate the variational free energy using the most
general Gaussian kernel for monomer-monomer correla-
tions. In Section 3 we clarify the conceptual difference
between a perturbative and a self-consistent treatment
of the problem, which can both be formulated within
the des Cloizeaux formalism. As an example, we per-
form the perturbation around a rigid rod, which in the
limit of an infinitely long rod leads back to the results
of Odijk-Skolnick-Fixman (OSF) for the electrostatic per-

sistence length `P . Within such a perturbational scheme,
the length `P is defined as the elastic response parameter
characterizing a small perturbation around some prefixed
chain configuration.

In Section 4 we introduce our self-consistent scheme,
where the polymer is allowed to take on its preferred
equilibrium structure. We first consider the case of un-
screened electrostatics, for which the chain statistics is
dominated by an average or classical path. Around this
mean path we find strongly anisotropic Gaussian fluctu-
ations. For screened interactions, we systematically solve
the variational self-consistent equations in the asymptotic
regimes of large and small monomer-monomer separations
along the chain. For large separations, the polymer is
isotropically swollen. For small separations, we obtain the
monomer-monomer correlation function in terms of an ex-
pansion as a function of the monomer-monomer separa-
tion. We define the electrostatic persistence length `P as
the crossover length between the persistent (i.e., rodlike)
structure at intermediate length scales and the isotropi-
cally swollen structure at large length scales. We note that
this definition of `P is different from the usual definition
in terms of an elastic response to mechanical perturba-
tions from a preferred equilibrium conformation [30]. We
perform a global analysis of the scaling behavior as a func-
tion of the screening length ξ and electrostatic interaction
strength β and find three different scaling regimes:

(i) a Gaussian-persistent regime with Gaussian behav-
ior at small scales and persistent behavior at inter-
mediate length scales. The persistence length is de-
fined as the crossover length between the persistent
and the asymptotically swollen behavior and given

by `P ∼ β1/3ξ2 ln−2/3[β1/3ξ]. This result is similar to
the original scaling result by Khokhlov and Khacha-
turian [9] with an additional logarithmic correction;

(ii) a Gaussian regime with Gaussian behavior at small
length scales. Here the electrostatic repulsion be-
tween the monomers only leads to subfluent correc-
tions to Gaussian scaling at small separations, and
the concept of a persistence length is meaningless;

(iii) a persistent regime, where the chain resembles a
stretched rod on small scales. The naive Gaussian
polymer model predicts an overstretched chain, char-
acterized by a swelling exponent ν > 1 for d < 3. We
circumvent this problem by using the Kuhn length
as a Lagrange parameter, explicitly keeping the sepa-
ration between neighboring monomers constant. The
resulting behavior is described by a persistence length
according to the original prediction by OSF, `P ∼
βξ2, without logarithmic corrections.

In between regime (i) and (iii) we expect strong
crossover phenomena for the screening-length depen-
dence of the electrostatic persistence length, in agreement
with recent calculations based on the uniform expansion
method [26].

In experiments one usually infers the persistence len-
gth from an analysis of the radius of gyration Rg,
which – by comparison with the prediction for Rg using
the worm-like-chain model – leads to an estimate for
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the persistence length. We show that this estimate is only
indirectly related to the persistence length as we define
it, since the worm-like chain model does not correctly de-
scribe the large-scale behavior of a polyelectrolyte chain.
In fact, the dependence of the persistence length on the
screening length depends on how the persistence length
is measured and defined, which might be an explanation
for the consistently observed discrepancies between exper-
iments and theories. This point we discuss in detail in the
last sections, together with a critical examination of the
effects of an additional excluded-volume interaction and
finite-polymer length.

2 Variational free energy

In our calculations we adopt the standard Gaussian model
for polymer chains. We assume that the ions of the poly-
mer are in presence of their counter-ions or of salt, so that
the Coulomb interaction is replaced by a Debye-Hückel
screened interaction. The justification for this (approxi-
mate) replacement can be found in Appendix A.

The Hamiltonian for a uniformly charged polymer
chain of polymerization index N embedded in d-dimen-
sional space then reads

H

kBT
=

d

2a2

N∫
0

ds ṙ2(s)

+
β

2

N∫
0

ds

N∫
0

ds′
exp(−|r(s)− r(s′)|/ξ)

|r(s)− r(s′)|d−2
(1)

where the electrostatic interaction strength β = `d−2
B /A2

depends on the Bjerrum length `B ≡ e2/4πεkBT . The
distance between charges along the chain in units of the
Kuhn length is given by A, that is, 1/A measures the
fraction of charged monomers. The factor one half in
front of the electrostatic interaction prevents overcount-
ing, and the prefactor of the stretching term is attuned
such that the average monomer-monomer distance in the
absence of interactions is

√
〈[r(s) − r(s′)]2〉 = a

√
|s− s′|.

This Gaussian model neglects the constant, finite length
of a polymer chain if strong repulsive interactions are
present. In Section 4.3 and Appendix B we show how
one can use the Kuhn length a as a Lagrange parameter
to keep the nearest-neighbor monomer-monomer distance
constant. The additional effect of excluded-volume inter-
actions will be treated in Section 4.5.

For the variational Hamiltonian we choose the most
general Gaussian kernel,

H0

kBT
=

1

2

∫
ds

∫
ds′
{

[r‖(s)− r0(s)]g−1
‖ (s, s′)[r‖(s

′)− r0(s′)]

+ r⊥(s)g−1
⊥ (s, s′)r⊥(s′)

}
. (2)

We explicitly account for the possibility of a classical path
of the polymer, denoted by r0(s), which corresponds to a
tendency of the polymer to proceed on average towards

a given direction and therefore amounts to a symmetry-
breaking into an anisotropic state. The above form of the
kernels accounts for straight classical paths; for more com-
plicated classical paths (circles, spirals, etc.) one would
have to use more complicated kernels, which, however, is
not done in this paper. Whether the actual classical path
turns in fact out to be non-zero will be determined by a
minimization of the trial-free energy, as in any variational
theory. The rotational symmetry could even be broken in
the absence of a classical path, by having different Gaus-
sian kernels in the parallel and perpendicular directions.
This is most likely to occur for short-ranged interactions
in dimensions three, but for electrostatic interactions is
only relevant for dimensionality between four and six; we
therefore do not pursue this point in this paper. The only
constraint on the Gaussian kernels g−1

‖ (s, s′) and g−1
⊥ (s, s′)

is that they be symmetric, i.e., that g−1
⊥ (s, s′) = g−1

⊥ (s′, s)
holds; a restriction to translationally invariant interactions
will be made at a later point.

The variational free energy reads

Fvar/kBT = 〈H/kBT −H0/kBT 〉0 + F0/kBT (3)

where F0/kBT = − lnZ0 is the free energy of the Gaussian
model defined in equation (2).

In the following, we will calculate the different expec-
tation values occurring in the variational free energy. The
expectation value of the local stretching energy reads

〈ṙ2(s)〉0 = ṙ2
0(s) +

d2g‖(s, s
′)

dsds′

∣∣∣∣
s′=s

+ (d− 1)
d2g⊥(s, s′)

dsds′

∣∣∣∣
s′=s

(4)

and thus contains a contribution from the classical path,
but also contributions from the parallel and perpendicular
fluctuations around this path. The electrostatic energy can
be written as

exp(−|r(s) − r(s′)|/ξ)

|r(s) − r(s′)|d−2
=

Ω(d)

∫
ddk

(2π)d
exp(ik · [r(s)− r(s′)])

k2 + ξ−2
, (5)

where Ω(d) ≡ 2πd/2/Γ (d/2) denotes the surface area of
a hypersphere. We next introduce the following notation
for the shifted monomer-monomer correlation functions,

2b‖(s, s
′) ≡ g‖(s, s) + g‖(s

′, s′)− 2g‖(s, s
′), (6)

2b⊥(s, s′) ≡ g⊥(s, s) + g⊥(s′, s′)− 2g⊥(s, s′), (7)

with which the squared monomer-monomer separation can
be written as

〈[r(s)− r(s′)]2〉0 =

[r0(s)− r0(s′)]2 + 2b‖(s, s
′) + 2(d− 1)b⊥(s, s′). (8)
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〈
exp{−|r(s)− r(s′)|/ξ}

|r(s) − r(s′)|d−2

〉
0

= Ω(d)

∫
ddk

(2π)d
exp{ik‖ · [r0(s)− r0(s′)]− k2

‖b‖(s, s
′)− k2

⊥b⊥(s, s′)}

k2 + ξ−2

=
1

2d−1Γ (d/2)

∞∫
0

dz
[
b‖(s, s

′) + z
]−1/2 [

b⊥(s, s′) + z
]−(d−1)/2

exp

{
−
z

ξ2
−

[r0(s)− r0(s′)]2

4[b‖(s, s′) + z]

}
·

(9)

Using these definitions, the expectation value of the elec-
trostatic energy can be written as

see equation (9) above.

The Gaussian free energy is, up to an unimportant con-
stant factor, given by

F0/kBT = − lnZ0

= − ln
{

[det g‖]
1/2[det g⊥](d−1)/2

}
. (10)

The expectation value of the Gaussian Hamiltonian itself,
〈H0〉0, only contributes an unimportant constant to the
free energy and will not be considered.

In the remainder of this article we will minimize the
variational free energy for various limiting cases, i.e., we
will consider solutions to the equation

δFvar/kBT

δg‖(s, s′)
=
δFvar/kBT

δg⊥(s, s′)
=
δFvar/kBT

δr0(s)
= 0. (11)

To demonstrate the variational method at work, let us first
consider the free energy in the absence of interactions. In
this case, we assume isotropy without a classical path,
g(s, s′) = g‖(s, s

′) = g⊥(s, s′), and the free energy reads

Fvar

kBT
= −

d

2
ln det g +

d2

2a2

N∫
0

ds
d2g(s, s′)

dsds′

∣∣∣∣∣∣
s′=s

.

In order to minimize this functional, we take a functional
derivative with respect to the Gaussian kernel, and obtain

δFvar/kBT

δg(s, s′)
= −

d

2
g−1(s, s′) +

d2

2a2

d2δ(s− s′)

dsds′
·

Setting this equation equal to zero, we obtain g−1(s, s′) =
−(d/a2)δ′′(s − s′). When this form of g−1 is used in
the variational expression (2), it leads back exactly to
the original Hamiltonian (1). Furthermore, the functional
inverse of the Gaussian kernel is (up to a constant)
given by g(s, s′) = −(a2/2d)|s − s′|, which together with
equation (8) leads back to the scaling of the monomer-
monomer separation as 〈[r(s)− r(s′)]2〉0 = a2|s− s′|. This
of course comes totally expected: for a Hamiltonian which
is Gaussian, the variational method is exact.

3 Perturbation calculation

In order to elucidate the complex behavior of polyelec-
trolytes, two different routes can be taken.

(i) The problem can be solved self-consistently, by
making an ansatz for the variational Hamiltonian which
should be as general as possible while still being solvable
with ease (the Gaussian ansatz we use is a natural choice).
Minimization of the free energy leads to self-consistent
equations, which determine the equilibrium structure of
the polymer. In this case, the monomer-monomer correla-
tion function can be interpreted in terms of an underlying
persistence length, although it is important to note that
one has to generalize the original definition of the persis-
tence length in the case of electrostatic interactions: not
only is the resulting persistence length scale and finite-
size dependent, but also higher-order bending terms can
be important. This will be the subject of Section 4.

(ii) In this section, we will calculate the elastic response
to a small perturbation around a given, fixed configuration,
which amounts to determining the fluctuation spectrum of
the response function. The persistence length is identified
as the coefficient of the bending term, which has a quartic
dependence on the bending momentum.

In the perturbation approach, we have to confine the
polymer to a given path, which is called r0(s). We will
be interested in the response function of perturbations
around this path, which is described by a Gaussian kernel,
g̃−1(s, s′). This can be formally achieved by defining a
perturbative partition function

Zper ≡ exp−
1

2

∫
ds

∫
ds′
{

r0‖(s)g̃
−1
‖ (s, s′)r0‖(s

′)

+ r0⊥(s)g̃−1
⊥ (s, s′)r0⊥(s′)

}
= lim
g→0

Z−1
0

∫
Dr(s) exp {−H/kBT −H0/kBT}

(12)

with H and H0 given by equations (1, 2), respectively.
The limit g → 0 concerns both the parallel and the per-
pendicular correlation functions. Setting the inverse Gaus-
sian kernel g to zero in equation (12), confines the poly-
mer exactly to the classical path. Using the fact that
g̃−1
⊥ (s, s′) = −δ2 lnZper/δr0⊥(s)δr0⊥(s′) (and similarly

for the parallel kernel), the response kernel g̃−1
⊥ is given

by

g̃−1
⊥ (s, s′) = lim

g→0

{
g−1
⊥ (s, s′)−

∫
ds̃ds̃′g−1

⊥ (s̃, s)g−1
⊥ (s̃′, s′)

×
〈

[r⊥(s̃)− r0⊥(s̃)]
[
r⊥(s̃′)− r0⊥(s̃′)

]〉}
,

(13)
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〈H/kBT 〉0 =
d

2a2

∫
ds

{
b20 +

d2g‖(s, s
′)

dsds′

∣∣∣∣
s′=s

+ (d− 1)
d2g⊥(s, s′)

dsds′

∣∣∣∣
s′=s

}

+
β

2dΓ (d/2)

∞∫
0

dz

N∫
0

ds

N∫
0

ds′
exp

{
−z/ξ2 − b20(s− s′)2/4[b‖(s, s

′) + z]
}[

b‖(s, s′) + z
]1/2

[b⊥(s, s′) + z](d−1)/2
· (19)

g̃−1
⊥ (s, s′) = −

d

a2
δ′′(s− s′) +

β

2dΓ (d/2)

∞∫
0

dz z−(d+2)/2 exp

{
−
z

ξ2
−
b20(s− s′)2

4z

}

−
β

2dΓ (d/2)

∞∫
0

dz

N∫
0

ds̃ z−(d+2)/2 exp

{
−
z

ξ2
−
b20(s̃− s′)2

4z

}
δ(s− s′), (20)

g̃−1
‖ (s, s′) = −

d

a2
δ′′(s− s′) +

β

2dΓ (d/2)

N∫
0

dz z−(d+2)/2

(
1−

b20(s− s′)2

2z

)
exp

{
−
z

ξ2
−
b20(s− s′)2

4z

}

−
β

2dΓ (d/2)

∞∫
0

dz

N∫
0

ds̃ z−(d+2)/2

(
1−

b20(s̃− s′)2

2z

)
exp

{
−
z

ξ2
−
b20(s̃− s′)2

4z

}
δ(s− s′). (21)

where the expectation value is taken with respect to the
sum of H and H0. The expectation value on the right can
be calculated from the generating functional as

g̃−1
⊥ (s, s′) = lim

g→0

{
g−1
⊥ (s, s′) +

2

d− 1

∫
ds̃ds̃′g−1

⊥ (s̃, s)g−1
⊥ (s̃′, s′)

×
δ ln

∫
Dr(s) exp {−H/kBT −H0/kBT}

δg−1
⊥ (s̃, s̃′)

}
, (14)

which can be rewritten as

g̃−1
⊥ (s, s′) = lim

g→0

{
g−1
⊥ (s, s′)

−
2

d− 1

δ ln
∫
Dr(s) exp {−H/kBT −H0/kBT}

δg⊥(s, s′)

}
. (15)

To first order in a perturbative expansion around the
Gaussian Hamiltonian H0 one obtains

g̃−1
⊥ (s, s′) = lim

g→0

{
g−1
⊥ (s, s′)

−
2

d− 1

δ {lnZ0 − 〈H/kBT 〉0}

δg⊥(s, s′)

}
. (16)

Using the result for the Gaussian partition function, equa-
tion (10), the final result for the perpendicular kernel is

g̃−1
⊥ (s, s′) =

2

d− 1
lim
g→0

δ〈H/kBT 〉0
δg⊥(s, s′)

, (17)

and the analogous equation for the parallel kernel reads

g̃−1
‖ (s, s′) = 2 lim

g→0

δ〈H/kBT 〉0
δg‖(s, s′)

· (18)

This is an important result, since it shows that the per-
turbative Gaussian kernels follow from an equation very
similar to the self-consistent equation (11) derived from
minimizing the variational free energy. The main differ-
ence is that in the self-consistent approach the polymer is
allowed to find its preferred configurational state, whereas
in the perturbation approach it is forced into one prede-
termined configuration. If this predetermined state corre-
sponds to the equilibrium state, the interpretation of re-
sults is straightforward. Usually the equilibrium structure
is not known, in which case a self-consistent treatment is
advisable (see Section 4).

3.1 The stiff rod limit

For a stiff rod we have [r0(s)−r0(s′)]2 = b20(s−s′)2, where
the constant b0 measures the linear, classical stretching of
the polymer chain.

The expectation value of the Hamiltonian reads

see equation (19) above.

Using equations (17, 18), we obtain for the perpendicular
and parallel kernels the results

see equations (20, 21) above.

The kernel can be conveniently expanded as local opera-
tors, and then takes the form of

g̃−1
⊥ (s, s′) = a⊥2 (s)δ′′(s− s′) + a⊥4 (s)δ′′′′(s− s′) + · · ·

(22)
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and similarly for the parallel kernel. The important point
to note is that the coefficients in front of the delta func-
tions, the vertex functions, do depend on the position
along the polymer chain, and are defined by

a⊥2i(s) =
β

2d(2i)!Γ (d/2)

×

∞∫
0

dz

N−s∫
−s

dt t2iz−(d+2)/2 exp

{
−
z

ξ2
−
b20t

2

4z

}
· (23)

The quartic coefficient, which is the electrostatic contri-
bution to the bending rigidity, i.e., `el = a⊥4 , takes the
form

`el(s) =
β

4! 2dΓ (d/2)

×

∞∫
0

dz

N−s∫
−s

dt t4z−(d+2)/2 exp

{
−
z

ξ2
−
b20t

2

4z

}
· (24)

In the limit of an infinite rod, the integral over the differ-
ence coordinate t is extended from minus infinity to plus
infinity and the result is

`el,∞ =

√
πβξ5−dΓ [(5− d)/2]

2dΓ [d/2]b50
· (25)

For three dimensions the exact result reads

`el(s) =
βξ2

4b50
[1− Ψ(s,N)] (26)

with the correction term given by

Ψ(s,N) =[
1

2
+
b0

2ξ
(N − s) +

b20
6ξ2

(N − s)2

]
exp

{
−(N − s)

b0

ξ

}
+

[
1

2
+
b0

2ξ
s+

b20
6ξ2

s2

]
exp

{
−s

b0

ξ

}
· (27)

The correction in the middle of the rod is

Ψ(N/2, N) = exp

{
−
Nb0

2ξ

}[
1 +N

b0

2ξ
+N2 b20

12ξ2
s2

]

and the correction at the end of the rod is

Ψ(0, N) =
1

2
+

[
1

2
+N

b0

2ξ
+N2 b

2
0

6ξ2
s2

]
exp

{
−
Nb0

ξ

}
·

We find that for b0 = 1, i.e., when the rod is stretched
to its full extension, the stiffness in the rod-middle in the
limit of an infinitely long rod is `el,∞ = βξ2/4, which
agrees exactly with the previous calculation by Odijk and
Fixman. For a finite rod, there is an exponential depen-
dence on the rod length. The stiffness at the rod end is

exactly half the stiffness in the middle, even in the limit
of an infinitely long rod.

A second rather subtle point concerns the scale-
dependence of the persistence length. The momentum de-
pendent bending rigidity is defined by

`el(ω) ≡
1

4!

d4g̃−1
⊥ (ω)

dω4
=

1

4!

∫
ds s4g̃−1

⊥ (s). (28)

The integral can be calculated exactly using the expression
(20) and the resulting bending rigidity is

`el(ω) = `el,∞

{[
1 +

ξ2ω2

b20

] d−5
2

− 2(5− d)
ξ2ω2

b20

[
1 +

ξ2ω2

b20

]d−7
2

+ (7− d)(5− d)
ξ4ω4

3b40

[
1 +

ξ2ω2

b20

] d−9
2

}
· (29)

For momenta smaller than the inverse screening length,
ξω < b0, the momentum dependence of the bending rigid-
ity can be expressed as a ω-dependent correction to the
asymptotic value `el,∞, which corresponds to a character-
istic softening of the polymer at small (but not too small)
length scales,

`el(ω) ' `el,∞

{
1− (5− d)

5ξ2ω2

2b20
+O(ω4)

}
. (30)

The momentum dependence of the bending rigidity is uni-
versal and thus should be measurable experimentally in
a wide variety of systems. For larger momenta than the
inverse screening length, ξω > b0, the correction terms
leads to a (in general) non-analytic behavior of the bend-
ing rigidity, which reads

`el(ω) ' `el,∞

{
1−

1

3
(d− 1)(5− d)

}[
ξ2ω2

b20

] d−5
2

· (31)

For 2 < d < 4 the bending rigidity is now negative,
which corresponds to a buckling instability of the poly-
mer. Specifically for d = 3, we obtain a negative surface
tension, which shows that without the finite length con-
straint (which is not built into the perturbative approach,
since one is only interested in the response to an infinites-
imal perturbation) the polymer is unstable with respect
to transverse fluctuations. An expression which takes into
account the non-extensibility of the polymer has been de-
rived by Barrat and Joanny [13,3], and leads to a finite,
positive bending rigidity for large momenta.

4 Self-consistent equation (SCE)

4.1 Unscreened electrostatics – occurrence
of a classical path

The classical path is determined by a functional variation
of the variational free energy, i.e., by δFvar/δr0(s) = 0.
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The resulting solutions are straight lines and circle seg-
ments with spatially varying stretching magnitudes. To
simplify the following discussion we assume a homoge-
neously stretched path, realized by periodic boundary con-
ditions or by assuming a polymer ring. A classical path
will be only realized if the screening length is infinity, we
therefore set ξ =∞.

The free energy functional has to be minimized with
respect to the classical path amplitude, b0, and the parallel
and perpendicular kernels. The self-consistent equation for
the path amplitude reads

d

a2
=

β

2d+1Γ [d/2]
Ξ0 (32)

with

Ξ0 ≡

N/2∫
−N/2

ds

∞∫
0

dz
s2 exp{−b20s

2/4(b‖(s) + z)}

[b‖(s) + z]3/2[b⊥(s) + z](d−1)/2
·

(33)

The fourier-transformed self-consistent equations for the
kernels read

g−1
‖/⊥(ω) =

d

a2
ω2 − ω2 β

2d+1Γ [d/2]
Ξ‖/⊥ +O(ω4) (34)

with

Ξ‖ = Ξ0 + b0
dΞ0

db0
(35)

and

(d− 1)Ξ⊥ +Ξ‖ = 2

N/2∫
−N/2

ds
s2 exp

{
−b20s

2/4b‖(s)
}

[b‖(s)]1/2[b⊥(s)](d−1)/2
·

(36)

Let us first consider the classical path in the absence of
fluctuations, which means b⊥(s) = b‖(s) = 0, in which
case Ξ0 becomes

Ξ0 =
2dΓ [d/2]

bd0

N/2∫
−N/2

ds s2−d (37)

Using the self-consistent equation (32) the result for the
stretching amplitude is [4]

b0 =



(
a2β

2d(d− 3)

)1/d

for d > 3(
a2β
6 lnN

)1/3

for d = 3(
a2β

2d(3− d)

)1/d

N3/d−1 for d < 3.

(38)

For dimensionality three a logarithmic divergence occurs
both at the lower and upper cutoff, for smaller dimensions
the chain is superstretched with an exponent ν = 3/d. It
becomes clear that for d < 4 the classical path solution is
preferred over the fully isotropic solution, which predicts
a ν = 2/(d − 2) and thus an overstretching already for
d < 4.

In the presence of path-fluctuations, the results are
markedly different. Since the small-momentum behavior
of the kernels is regular, we expect asymptotically (for
large s) a linear behavior of b⊥(s) and b‖(s), and we de-
fine b⊥(s) = b⊥,1|s| and b‖(s) = b‖,1|s|. The asymptotic
behavior of b(s) in real space is related to the asymptotic
behavior in momentum space by

lim
ω→0

g−1(ω)

ω2
= lim
s→∞

|s|

2b(s)

in the case where the limits on both sides exist. For d > 3
the integral Ξ0 in the limit N =∞ can be rewritten as

Ξ0 =
b3−d‖,1

b6−d0

2d−5Γ [3− d/2]Ω (39)

where

Ω ≡

∞∫
0

dz [1 + z](3−d)/2[b⊥,1/b‖,1 + z](1−d)/2.

We thus obtain with equation (35) the relation Ξ‖ =
(d − 5)Ξ0. Combining this with the self-consistent equa-
tion for the classical stretching amplitude, equation (32),
we obtain for the parallel kernel the result

g−1
‖ (ω) =

d

a2
ω2(6− d). (40)

The parallel kernel is thus larger than in the absence of in-
teractions, the chain becomes stiffer in parallel directions.

For the perpendicular kernel we combine equations
(34–36) and obtain to leading order

g−1
⊥ (ω) '

2(d− 3)d

(d− 1)a2
ω2 · (41)

The perpendicular kernel is thus reduced and fluctua-
tions are enhanced over the interaction-free case (for which
g−1
‖ (ω) = g−1

⊥ (ω) = dω2/a2). Interestingly, the upper crit-

ical dimension at which this symmetry breaking between
the parallel and perpendicular kernels occurs is d = 5.

For dimensionality three we again obtain logarithmic
corrections. The stretching amplitude b0 is determined by
the self-consistent equation

b0 ∼ (a2β ln(Nb20/b‖,1))1/3 (42)

where b‖,1/b
2
0 is the Gaussian blob-size. The solution to

leading order is b0 ∼ (a2β ln(N/b‖,1))1/3 plus double-
logarithmic corrections.
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g−1(s, s′) = −
d

a2
δ′′(s− s′)−

β

2dΓ [d/2]

∫
ds̃ds̃′dz

exp(−z/ξ2)
[
δ(s̃− s)δ(s̃− s′)− δ(s− s̃)δ(s′ − s̃′)

]
[b(s̃, s̃′) + z]d/2+1

· (45)

The parallel kernel is to leading order still given by
equation (40), and in specific we find b‖,1 = a2/12. The
perpendicular kernel acquires a logarithmic dependence
on N in leading order and reads

g−1
⊥ (ω) =

ω2

24Γ [3/2]a2 ln(Nb20/b‖,1)
· (43)

This means that the polymer becomes infinitely rough as
the number of monomers goes to infinity.

4.2 Screened electrostatics

We now turn to the important case of screened electro-
static interactions. In this case a classical path is not
present, and we assume all correlation functions and there-
fore also the Gaussian kernels to be isotropic (in fact, even
in the screened case one expects a symmetry-breaking in
the amplitudes of the correlation functions and the forma-
tion of ellipsoidal coils, but we are not interested in this
effect). The full variational free energy reads

Fvar

kBT
= −

d

2
ln det g +

d2

2a2

N∫
0

ds
d2g‖(s, s

′)

dsds′

∣∣∣∣∣∣
s′=s

+
β

2dΓ [d/2]

N∫
0

ds

N∫
0

ds′
∞∫

0

dz
exp{−z/ξ2}

[b(s, s′) + z]d/2
· (44)

The self-consistent equation is obtained by taking a func-
tional derivative with respect to g and reads

see equation (45) above.

This is the fundamental equation that determines the
polymer behavior on all length scales. In Section 4.2.2
we will obtain the large-s behavior by solving the Fourier
transformed version of this equation. In the next section
we will obtain a solution in terms of a systematic expan-
sion valid in the small-s limit. The interesting cross-over
behavior, giving rise to an effective electrostatic persis-
tence length, will be discussed at length in Section 4.2.3.

4.2.1 Small separations – real space

To obtain a solution for small separations, we first bring
the self-consistent equation into a more manageable form
by multiplying by g; in what follows, we will confine our-
selves to homogeneous kernels, i.e., g(s, s′) = g(s − s′).
The resulting equation determines the second derivative

of the monomer-monomer correlation function b(s) in a
self-consistent way and reads

d

a2
b′′(s) = δ(s) +

β

2dΓ [d/2]

×

N∫
0

ds′
∞∫

0

dz
exp{−z/ξ2}[b(s− s′)− b(s)]

[b(s′) + z]d/2+1
· (46)

For small separations s one can systematically expand the
integral appearing on the right-hand side of equation (46),
which leads to a self-consistent equation for the monomer-
monomer mean-square correlation function b(s). Defining
the short-distance expansion

b(s) =
a2|s|

2d
+
∞∑
i=2

bi|s|
i (47)

we find the coefficients to be given by

bi =
βa2

i!2ddΓ [d/2]

×

N∫
0

ds

∞∫
0

dz
exp{−z/ξ2}[b(i−2)(s)− b(i−2)(0)]

[b(s) + z]d/2+1
(48)

for even i and

bi = −
βa2bi−2

i(i− 1)2ddΓ [d/2]

N∫
0

ds

∞∫
0

dz
exp{−z/ξ2}

[b(s) + z]d/2+1
(49)

for odd i, where b(j)(s) denotes the jth derivative of the
correlation function b(s).

All integrals converge, and at the end one has to solve
a system of equations for the coefficients bi. In fact, the
odd terms can be summed up exactly. To this end, we
define

Θ ≡
1

2ddΓ [d/2]

N∫
0

ds

∞∫
0

dz̃
exp{−z̃a2/ξ2}

[b(s)/a2 + z̃]d/2+1

so that equation (49) can be rewritten as a recursive rela-
tion

bi = −
βa2−d

i(i− 1)
Θbi−2

with the initial value b1 = a2/2d. The sum of all odd terms
can now be evaluated exactly and is given by

bodd(s) =
a2

2d

sin
[√

βa2−dΘ|s|
]

√
βa2−dΘ

·

Before we calculate the even coefficients as well, we will
obtain the asymptotic solution in the limit of large s.
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4.2.2 Screened electrostatics – momentum space

Let us define the Fourier transform of a function f(s) as

f(ω) = N−1

N∫
0

ds exp(−iωs)f(s)

and the inverse as

f(s) = (N/2π)

2π∫
0

dω exp(iωs)f(ω).

The self-consistent equation in momentum space is ob-
tained by Fourier transforming equation (45) and reads

Ng−1(ω) =
dω2

a2
−Ω(ω) (50)

where the interaction term is given by

Ω(ω) ≡
β

2dΓ [d/2]

N∫
0

ds

∞∫
0

dz
exp{−z/ξ2}[1− cos(sω)]

[b(s) + z]d/2+1
·

(51)

In this section we are interested in the asymptotics for
large separations or, conversely, in the asymptotic behav-
ior for small momentum. In this limit, the interaction term
can be rewritten as

Ω(ω) =
βξ2

2dΓ [d/2]

×

∫
ds

1− cos[ωs]

b(s)d/2+1

∫
dz̃

exp[−z̃]

[1 + ξ2z̃/b(s)]d/2+1

'
βξ2

2dΓ [d/2]

∫
ds

1− cos[ωs]

b(s)d/2+1

{
1 +O

(
ξ2/b(s)

)}
.

(52)

Making the asymptotic ansatz

b(s) ∼ b∞s
2ν (53)

for large s, the leading non-analytic contribution to the
interaction is given by

Ω(ω) = −
πβξ2ων(d+2)−1

2db
d/2+1
∞ Γ [d/2]Γ [ν(d+ 2)] cos[πν(d + 2)/2]

·

(54)

For the last equation we used the integral∫
ds

1− cos(ωs)

sλ
= −

πωλ−1

Γ [λ] cos[πλ/2]
, (55)

which converges for the range 1 < λ < 3.
The SCE in equation (50) can in principle be solved

in two different ways: either by balancing the interaction
term with the elastic term, or by balancing the interac-
tion term with the entropic term on the left. Following

the former recipe, one balances the elastic term ∼ ω2

with the interaction term ∼ ων(2+d)−1 which leads to the
Flory exponent ν = 3/(d + 2); however, as noted by des
Cloizeaux [27], this result has to be rejected because of a
divergence of the interaction term Ω. The elastic term is
therefore balanced by the analytic contribution (propor-
tional to ω2) from the interaction term, and the swelling
exponent is determined by balancing the entropic term
on the left with the next-leading, non-analytic contribu-
tion from the interaction term. By taking derivatives of
equation (55) with respect to ω (which corresponds to an
analytic continuation of the integral for any value of λ),
we obtain the leading behavior of the Fourier transform
b(ω) for small ω as

b(ω) ∼
b∞πω

−1−2ν

NΓ [−2ν] cos[πν]
, (56)

which is negative.
Using the relation N2b−1(ω) = 1/b(ω) and g−1(ω) =

−b−1(ω) we can rewrite the equation which determines
the swelling exponent as

−
Γ [−2ν] cos[πν]

b∞π
ω2ν+1 =

πβξ2ωνd+2ν−1

2db
d/2+1
∞ Γ [d/2]Γ [νd+ 2ν] cos[π(νd + 2ν)/2]

· (57)

Balancing the powers in ω, 2ν+1 = ν(2+d)−1, gives the
Cloizeaux result ν = 2/d. We note that this result in fact
represents the true swelling exponent in three dimensions
poorer than does the more simple-minded Flory approach
(although the actual numerical difference is quite small).
The main advantage of the present variational method
is that it allows to systematically calculate the scaling
behavior involving many different length scales. Balancing
the amplitudes gives

b∞ =

[
2πβξ2 tan[−2π/d]

(1 + 4/d)Γ [d/2]

]2/d

∼ (βξ2)2/d. (58)

4.2.3 Crossover regime

In this section we will connect the scaling behavior for
large separations (obtained in the last section in momen-
tum space) and for small separations (obtained in Sec-
tion 4.2.1 by an expansion in real space). As we will show,
it is the crossover between these two asymptotic regimes
where such interesting phenomena as the electrostatic per-
sistence length and the electrostatic blobsize show up and
find their explanation.

To discuss the crossover in some definite format, we
proceed by making a simple ansatz for the behavior of
b(s):

b(s) ∼

(a2/d)|s|+ b2s
2 for s < s′

b∞s
2ν for s′ < s.

(59)
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For small separations, the correlation function is expanded
in terms of powers of |s|, in agreement with the discus-
sion in the previous sections. The linear term in |s| is
exactly given by its non-interacting, Brownian value, as
shown in Section 4.2.1. For larger separations the behav-
ior of b(s) is given by the asymptotic law found in the last
section, so we always have a chain which is swollen with
a non-Gaussian exponent ν > 1/2 for large separations.
In principle one could make the ansatz more realistic (or
more complicated) by including corrections to the asymp-
totic scaling, and by adding higher-order terms (cubic,
quartic in |s| and so on), but the present model possesses
the right complexity to show the effects we are interested
in.

The crossover scale s′ is determined by a matching
condition on the two functions. How this matching is ef-
fected, depends on the relative strength of the coefficients,
and we find two distinct behaviors.

To present these two different behaviors in a transpar-
ent fashion, we introduce the following crossover scales:
by equating the linear and the quadratic term, one finds
that they are of equal magnitude for

sGP = a2/b2d. (60)

The Gaussian-persistent crossover scale sGP denotes the
number of monomers in a Gaussian blob at the onset of
persistent behavior, i.e., at the onset of a behavior de-
scribed by the quadratic term proportional to b2. This
scale is usually called the electrostatic blobsize. By equat-
ing the quadratic term and the asymptotic term, one ob-
tains a second cross-over scale as

sP =

(
b∞

b2

)1/(2−2ν)

. (61)

This scale is called the persistent crossover scale, because
it divides the persistent behavior, corresponding to a
linearly stretched array of monomers, from the asymp-
totic scaling range (for the largest monomer-monomer
separations).

We distinguish the following regimes:

– Gaussian-persistent regime: for sGP < sP , there will
be three separate scaling ranges, as schematically de-
picted in Figure 1: a Gaussian range (for s < sGP ),
a range where the polymer is linearly stretched (for
sGP < s < sP ), and the asymptotic range where the
chain is isotropically swollen (for sP < s). We call
this the Gaussian-persistent regime, because the chain
consists of a linear, persistent arrangement of Gaussian
blobs on intermediate length scales;

– Gaussian regime: if, on the other hand, the Gaussian-
persistent crossover scale is larger than the persistent
crossover scale, sGP > sP , the quadratic term can
only correspond to a correction to scaling and not to
the dominant scaling in a separate range of monomer-
monomer separations. We denote the corresponding
regime of parameters the Gaussian regime, because
there are only two scaling ranges: a Gaussian range
(for s < sGI), and the isotropically swollen range (for

P

R ~ Nν

R ~ N1/2
Gaussian

persistent

swollen

Fig. 1. Schematic
view of the three
scaling ranges in
the Gaussian-per-
sistent regime. On
small scales, for
s < sGP ∼ (a/β)2/3

ln−2/3 [ξβ1/3/a4/3],
the chain is Gaussian;
on intermediate scales,
for sGP < s < sP , the
Gaussian blobs are
aligned linearly, and
on larger scales, for
sP < s, the chain is
isotropically swollen
with an exponent ν >
1/2.

s > sGI). The Gaussian-isotropic cross-over scale sGI
is given by

sGI =

(
a2

db∞

)1/(2ν−1)

(62)

and is obtained by balancing the Gaussian behavior
directly with the asymptotic behavior for large sepa-
rations;

– Persistent regime: here the Gaussian scaling for small
monomer-monomer separations is absent complete-
ly and the polymer consists of stretched, rod-like
monomers on the smallest length scales. This regime
is defined by sGP < 1. It is this regime where the
Gaussian polymer model becomes inaccurate because
it neglects the non-extensibility of the polymer. We
nevertheless analyze this regime within our Gaussian
polymer ansatz, partly because computer simulations
have been performed for a discrete version of the Gaus-
sian measure, the so-called bead-and-spring model. In
Section 4.3. and Appendix B we show how to take the
non-extensibility into account, which does not change
our conclusions in an important way.

In all these regimes, the polymer is swollen for large
monomer-monomer separations, i.e., it is described by a
non-Gaussian exponent ν > 1/2. Interestingly, we do not
find a regime where the polymer is swollen down to the
smallest length scales (except on the boundary between
the Gaussian and the persistent regimes): on the smallest
length scales, the polymer is either found to be Gaussian
or rod-like.

After having discussed the possible scaling regimes, it
remains to actually calculate the coefficient b2. Following
equation (48), the quadratic coefficient is given by

b2 =
βa2

2d+1dΓ [d/2]

N∫
0

ds

∞∫
0

dz
exp{−z/ξ2}b(s)

[b(s) + z]d/2+1
(63)
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b2 ' βa
2

sξ∫
0

ds b(s)1−d/2 + βξ2a2

N∫
sξ

ds b(s)−d/2 ' βa4−d

sξ∫
0

ds s1−d/2 + βξ2a2−d

sGI∫
sξ

ds s−d/2 + βξ2a2b−d/2∞

∞∫
sGI

ds s−νd

' βξ4−d

1 +O

(
ξ6−dβ

a4

)d−2
4−d

 (73)

which can be rewritten as

b2 =
βa2

2d+1dΓ [d/2]

( sξ∫
0

ds b(s)1−d/2

∞∫
0

dz̃
exp{−b(s)z̃/ξ2}

[1 + z̃]d/2+1

+

N∫
sξ

ds b(s)−d/2
∞∫

0

dz̃
exp{−z̃}

[1 + ξ2z̃/b(s)]d/2+1

)

=
βa2

2ddΓ [d/2](d+ 4)

sξ∫
0

ds b(s)1−d/2 (1 +O[b(s)/ξ2]
)

+
βξ2a2

2d+1dΓ [d/2]

N∫
sξ

ds b(s)−d/2
(
1 +O[ξ2/b(s)]

)
. (64)

In the above equations, the scale sξ denotes the monomer
distance at which the mean-squared separation equals the
screening length, i.e.,

b(sξ) = ξ2. (65)

Let us first consider the Gaussian-persistent regime, i.e.,
the regime for which 1 < sGP < sP holds, with the length
scales sGP and sP given by equations (60, 61), respec-
tively. As we will show at the end, in this regime we also
have 1 < sGP < sξ < sP , and therefore the Gaussian
blobs are smaller than the screening length. The monomer
number corresponding to a separation in real space of the
screening length is thus

sξ = ξ/
√
b2. (66)

Neglecting constants of order unity, we have

b2 ' βa
2

sξ∫
0

ds b(s)1−d/2 + βξ2a2

N∫
sξ

ds b(s)−d/2

' βa4−d

sGP∫
0

ds s1−d/2 + βa2b
1−d/2
2

sξ∫
sGP

ds s2−d

+ βξ2a2b
−d/2
2

sP∫
sξ

ds s−d + βξ2a2b−d/2∞

∞∫
sP

ds s−νd

'
βa8−2db

d/2−2
2

(4− d)(d − 3)

{
1 +O

(
a4

ξ6−dβ

) d−3
6−d

}
(67)

from which we immediately obtain

b2 ∼ β
2

6−d a
4(4−d)

6−d . (68)

We note that a logarithmic term appears for the special
case d = 3, which will be treated further below. Using the
definitions (60, 66, 61), we find

sGP = β
−2
6−d a

2(d−2)
6−d , sξ = ξβ

−1
6−d a

−2(4−d)
6−d ,

sP = ξ
2
d−2β

−2(d−3)
(6−d)(d−2)a

−2d(4−d)
(6−d)(d−2) .

From these expressions we conclude 1 < sGP < sξ < sP
to be satisfied if and only if

ξ6−dβ > a4 (69)

and β/ad−2 < 1 hold. These conditions therefore define
the Gaussian-persistent regime, in which one finds an in-
termediate range of monomer-monomer separations where
the polymer is linearly stretched. We also see that the cor-
rection term to the integral calculated in equation (67)
is subfluent if condition (69) is satisfied. The persistence
length is defined as the mean monomer-monomer sepa-
ration at the boundary between the persistent and the
swollen range,

`P = b
1/2
2 sP = b1/2∞ sνP , (70)

from which we get

`P ' β
4−d

(6−d)(d−2) ξ
2
d−2 a

−4(4−d)
(6−d)(d−2) . (71)

Now let us turn to the Gaussian regime, where condition
(69) is not satisfied, i.e., the case where sP < sGP and
the intermediate persistent scaling range is absent. The
crossover between Gaussian and isotropically swollen scal-
ing range occurs at sGI > 1 as given by equation (62). Let
us first assume that 1 < sξ < sGI (an assumption which
will be checked later), so that according to definition (65)

sξ = ξ2/a2. (72)

We see that in the Gaussian regime, the screening length
is in fact smaller than the Gaussian blob size. Repeating
the calculation (67) which lead to the estimate of b2 in the
Gaussian-persistent regime, we write

see equation (73) above.

Using the definition (62) we obtain

sGI = ξ
−4
4−dβ

−2
4−d a

2d
4−d ,
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which is the number of monomers in the electrostatic blob
for the case when the screening length is smaller than the
blob size. Comparing this result with the prediction for
sξ, (72), we find 1 < sξ < sGI to hold whenever ξ/a > 1
and when condition (69) is not satisfied, so our calculation
is self-consistent for this parameter range. Assuming now
that sξ < 1 < sGI we obtain b2 ' βξ2a2−d, which is valid

for ξ/a < 1 and for ξ/a < (ad−2/β)1/2.
The third regime, the persistent regime, is defined by

the absence of a Gaussian scaling range at smallest length
scales, i.e., we have sGP < 1 < sP . We have to distinguish
between two subregimes:

(a) sGP < 1 < sξ < sP , where we find b2 '
(
βa2/(d −

3)
)2/d

and therefore a persistence length of

`P ' β
1
d ξ

2
d−2a

−4
d(d−2) .

This subregime of the persistent regime is satisfied for
1 < β/ad−2 < (ξ/a)d;

(b) sGP , sξ < 1 < sP , where we find b2 ' (βξ2a2)2/(2+d)

and therefore a persistence length of

`P ' (βξ2a−4/d)
d

(2+d)(d−2) .

This subregime of the persistent regime is realized for
(β/ad−2)1/d > ξ/a > (β/ad−2)−1/2.

4.2.4 Dimensionality d = 3

Let us now turn to the important case of dimensionality
d = 3, for which as already mentioned some of the scaling
coefficients acquire logarithmic cofactors. We first consider
the Gaussian-persistent regime, in which 1 < sGP < sξ <
sP holds. The expression for b2 in analogy to equation (67)
reads

b2 ' βa

sGP∫
0

ds s−1/2 + βa2b
−1/2
2

sξ∫
sGP

ds s−1

+ βξ2a2b
−3/2
2

sP∫
sξ

ds s−3 + βξ2a2b−3/2
∞

∞∫
sP

ds s−3ν

'
βa2

b
1/2
2

(
1 + ln

[
ξb

1/2
2

a2

]){
1 +O

(
a4

ξ3β

)2/3
}

(74)

from which we obtain

b2 ∼ β
2/3a4/3 ×


(

1 + ln

[
ξβ1/3

a4/3

])
for

ξβ1/3

a4/3
≈ 1

ln2/3

[
ξβ1/3

a4/3

]
for

ξβ1/3

a4/3
� 1

(75)

plus corrections of the order O
(
ln ln

[
ξβ1/3/a4/3

])
. Using

the identity sGP ∼ a2/b2, the equation (74) and its asymp-
totic solution (75) are identical to the equations (2.5, 2.6)

of reference [10], where these results were found using
a perturbative calculation around a uniformly stretched
polymer ring. It turns out that the electrostatic blob size
sGP in this case has a logarithmic cofactor. The persis-

tence length is given by `P = b
1/2
2 sP = b

3/2
∞ /b2 and thus

`P ∼
β1/3ξ2

a4/3
×


(

1− ln

[
ξβ1/3

a4/3

])
for

ξβ1/3

a4/3
≈ 1

ln−2/3

[
ξβ1/3

a4/3

]
for

ξβ1/3

a4/3
� 1.

(76)

Apart from the logarithmic cofactor, this result for the
persistence length agrees with the original prediction by
Khokhlov and Khachaturian [9] which can be obtained
from the Odijk prediction by simply replacing the poly-
mer line charge density by the charge density per elec-
trostatic blob size. Using the definitions for sGP , sξ,
and sP , equations (60, 66, 61), we find the inequality
1 < sGP < sξ < sP to be satisfied if

ξ/a > (β/a)−1/3, (77)

which defines the boundary from the Gaussian-persistent
to the Gaussian regime in three dimensions. We note that
this condition does not contain logarithmic corrections
and thus follows directly from the general condition (69)
by inserting d = 3. The Gaussian-persistent regime yields
to the persistent regime when the stretching amplitude b2
reaches a value of b2 ∼ a2, which happens at

ξ/a ∼ ea/β(β/a)−1/3. (78)

The Gaussian regime with a direct crossover from a Gaus-
sian behavior at small monomer-monomer separations to
an isotropically swollen behavior at large separations is re-
alized for ξ/a < (β/a)−1/3 and ξ/a < (β/a)−1/2. Here we
do not obtain logarithmic cofactors, and therefore the re-
sults from the last subsection are valid. The electrostatic
blob size is sGI ∼ ξ−4β−2a6. We note that the concept
of a persistence length is meaningless in this regime. We
distinguish two subregimes:

(a) for ξ/a > 1, where we have 1 < sξ < sGI , the
quadratic correction terms has a prefactor of b2 ' βξ;

(b) for ξ/a < 1, where we have sξ < 1 < sGI , the
quadratic correction terms has a prefactor of b2 '
βξ2/a.

The persistent regime, defined by sGP < 1 < sP , is
realized for ξ/a > ea/β(β/a)−1/3 and ξ/a > (β/a)−1/2.
We distinguish two subregimes:

(a) for ξ/a > (β/a)1/3, here one has 1 < sξ, the result for
b2 is

b2 ∼ β
2/3a4/3 ln2/3

[
ξ

β1/3a2/3

]
plus double-logarithmic corrections. The persistence
length follows to be

`P ∼
β1/3ξ2

a4/3 ln2/3(ξ/β1/3a2/3)
;
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β/a

ξ/a

1

1

Gauss.
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Fig. 2. Scaling regimes for a single polyelectrolyte chain as a
function of the rescaled screening length ξ/a and the rescaled
electrostatic interaction strength β/a = `B/A

2a. On large
length scales, the chain is always swollen. On small and in-
termediate length scales we distinguish three different scaling
regimes: (i) a Gaussian-persistent regime with Gaussian be-
havior at small and persistent behavior at intermediate length
scales. The persistence length is defined as the crossover length
between the persistent and the asymptotically swollen behavior
and given by `P ' β1/3ξ2 ln−2/3[β1/3ξ]; (ii) a Gaussian regime
where the persistent range is absent and the behavior crosses
directly over from Gaussian at small to swollen at large length
scales. Here the electrostatic repulsion between the monomers
only leads to subfluent corrections to Gaussian scaling at small
separations, and the concept of a persistence length is without
meaning; (iii) a persistent regime, where the chain resembles
a stretched rod on small scales. The boundaries are given by
ξ/a ∼ (β/a)−1/3 (between Gaussian and Gaussian-persistent),
ξ/a ∼ ea/β(β/a)−1/3 (between Gaussian-persistent and persis-
tent), and ξ/a ∼ (β/a)−1/2 (between persistent and Gaussian
regimes). The broken lines denote where the screening length
equals the separation between two monomers. In the persis-
tent regime the chain is overstretched, which however can be
avoided by rescaling the Kuhn length (with no change of the
scaling diagram).

(b) for ξ/a < (β/a)1/3, here one has sξ < 1, the result for
b2 is

b2 ∼ (βξ2a2)2/5.

No logarithmic corrections are present. The persis-
tence length follows to be

`P ∼
β3/5ξ6/5

a4/5
·

The different scaling regimes are summarized in Fig-
ure 2, where the dotted lines denote the parameter values
for which the screening length equals the mean distance
between two monomers. In the persistent regime, the bro-
ken line lies at values of ξ/a larger than unity, which re-
flects that the chain here is overstretched. As will be dis-
cussed in the next subsection, this overstretching can be
avoided by adjusting the Kuhn length.

It is important to note that the persistence length
shows different scaling behaviors in the three different
regimes. By varying the screening length (which is exper-

imentally of course easier than changing the charge pa-
rameter β, which is fixed by synthesis), one easily goes
from one regime into the other, which means that the
expected behavior of the persistence length is more com-
plicated than commonly assumed. This is in accord with
recent calculations by Ha and Thirumalai, where a com-
plicated crossover behavior for the salt dependence of the
persistence length is found for β/a ≈ 1 [26].

4.3 How to avoid overstretching

The question of how to implement the finite-length con-
straint into a Gaussian theory has been of considerable
interest in the past. Already for the free theory this
poses a number of problems, see e.g. reference [31]. In
the present case, where the repulsive interaction between
the monomers leads to an overstretching of the chain for
a restricted range of parameters (the so-called persistent
regime), we use a very simple remedy: we employ the Kuhn
length as a parameter to keep the distance between the
monomers equal to the original distance (in the absence
of interactions) [32]. Such an approach is justified, since
the Kuhn length can be interpreted as a control parameter
which ensures the correct scaling of the Gaussian theory,
as is discussed in Appendix B.

Since it is only the persistent regime where over-
stretching effects are important, we concentrate on this
regime. To show how this method works, we replace the
Kuhn length a in all expressions by a modified Kuhn
length ã ≡ αa. The parameter α now is tuned such that
the average real-space distance between two neighboring
monomers, given by

√
b(1), is of the order of a, the orig-

inal Kuhn length. This is achieved by enforcing a2 = b2.
Without giving the detailed results for α, we note that
with the definitions (70, 61) for `P and sP the persistence
length follows to be

`P ∼ b
1

2−2ν
∞ a

−2ν
2−2ν (79)

with the specific result (for d = 3) `P ∼ βξ2/a2. In the
persistent regime, where the electrostatic repulsion tends
to overstretch the chain, the effect of keeping the distance
between neighboring monomers fixed at the Kuhn length
is to reproduce the OSF result (without any logarithmic
corrections) for the electrostatic persistence length.

4.4 Finite size effects

To leading order, finite-size effects set in when the polymer
chain is shorter than sP , or, equivalently, when the poly-
mer end-to-end distance becomes smaller than the persis-
tence length. Here we briefly describe the scaling behavior
of the polymer radius in this non-asymptotic regime. In
the Gaussian-persistent regime and for a monomer num-
ber of sξ < N < sP , the end-to-end distance follows the
law R2 ∼ b2N

2 with the coefficient b2 given by equa-
tion (75). We therefore find a purely logarithmic depen-
dence of the polymer radius on the screening length ξ.
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If the polymer radius becomes smaller than the screen-
ing length, i.e., N < sξ, the radius is independent of the
screening length. In this case a calculation similar to the
one in equation (74) with sξ replaced by N gives

b2 ∼ β
2/3a4/3 ln2/3

(
Nβ2/3

a2/3

)
.

Clearly, the coefficient b2 vanishes when the polymer
length equals the Gaussian-persistent crossover scale sGP ,
which in three dimensions is given by sGP ∼ (a/β)2/3.

So far, we discussed the finite-size effects as a func-
tion of the polymer length N . Experimentally, one usually
varies the screening length, and here the same effects will
be observed: for a screening length larger than the polymer
radius, the polymer will be fully stretched (the maximally
achievable screening length is of course bounded by the
finite screening length of pure water) with a persistence
length independent of ξ. Increasing the salt concentration,
one will first encounter the regime defined by sξ < N < sP
with a purely logarithmic dependence of the persistence
length on ξ. Only at a much higher salt concentration,
corresponding to sP ∼ N , will the N -independent scaling
regime of the persistence length be reached.

4.5 Excluded-volume effects

The effect of a bare excluded volume can easily be incor-
porated into our theory. The extra term which is to be
added to the Hamiltonian reads

HEV
kBT

=
v

2

N∫
0

ds

N∫
0

ds′ δ[r(s)− r(s′)]. (80)

The expectation value is easily calculated, and reads

〈
HEV
kBT

〉
=

v

2d+1πd/2

N∫
0

ds

N∫
0

ds′ b(s, s′)−d/2.

This term affects both the large-scale behavior and the
small-scale behavior. The asymptotic swelling amplitude
b∞ is changed to

b∞ ∼ (βξ2 + v)ν , (81)

where we neglected constants of order unity between the
two terms. It is seen that there will be a smooth cross-
over between a behavior dominated by the electrostatic
excluded-volume, proportional to βξ2, and the bare ex-
cluded volume, v, as the screening length ξ is reduced,
as indeed seen by experiments [2] and in agreement with
earlier theoretical work on electrostatic excluded-volume
effects [33]. In this context we would like to note that some
very recent theoretical and experimental results show that
the structure of polyelectrolytes on large length scales can
well be described by the effective excluded volume term
alone, and that the bare excluded volume plays an impor-
tant role [17].

For small separations, there is a contribution of the
bare-excluded volume to the stretching amplitude b2
which is proportional to v/a. We note that this contribu-
tion is produced by the small distance cut-off and there-
fore due to interactions at the smallest length scales. Here
we see the interesting possibility of a persistence length
scale enhanced by an excluded-volume interaction. In fact,
in three dimensions, the excluded-volume interaction will
dominate over the electrostatic interaction in its contribu-
tion to the persistence length for v/a > (β/a)2/3.

4.6 Alternative definitions of the electrostatic
persistence length

In our self-consistent variational calculation, we adopted
a definition of the electrostatic contribution to the persis-
tence length `P based on the crossover between the persis-
tent and the isotropically swollen range. This is in accord
with the common notion of electrostatically stretched,
rod-like chain segments which are decorrelated on larger
length scales. This definition is analogous to the defini-
tion used in [13–15], where however the large-scale behav-
ior was assumed to be Gaussian (and not swollen, as fol-
lows from our calculation). The different prediction for the
screening-length dependence of persistence length (which
according to [13–15] is `P ∼ ξ, in contrast to our re-
sult) might come from this difference, as will be discussed
below.

This is not the only possible definition of the persis-
tence length: in Section 3 we show how to obtain the per-
sistence length by an elastic perturbation around a lin-
early stretched configuration. The same route has been
taken in some previous theoretical treatments [6,10]. In
three dimensions, this method essentially gives agreement
with the self-consistent treatment. In computer simula-
tions, one can measure the decay of bond-angle correla-
tions and infer the persistence length from the decay con-
stant, assuming that the decay is governed by a single
length scale and thus similar in nature to a semiflexible
polymer chain [20]. Yet another, more coarse-grained ap-
proach is taken in in most experiments [2] and also in
some simulations [18–20], where the persistence length is
deduced from the radius of gyration and using the hy-
pothesis that the polyelectrolyte can be viewed as a non-
interacting worm-like chain (WLC) on length scales larger
than the persistence length. For a WLC, the squared av-
erage polymer radius is given by R2 ∼ `PL, where L is
the total contour length of the polymer. Knowing the ra-
dius R and the length L, the persistence length `P follows.
(For short chains, one can in principle use a more accurate
expression for the radius.) In the following, we will show
that the latter way of extracting the persistence length
from the radius of gyration is not compatible with the
standard, microscopic definition of the persistence length.

Let us assume that on length scales larger than the
persistence length the polyelectrolyte chain can be viewed
as a Gaussian chain with modified Kuhn length ã ' `P
and rescaled number of monomers Ñ ' N/sP ' L/asP .
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The Flory-like free energy can be written as

F

kBT
∼

R2

Ñ ã2
+ v

Ñ2

R3
,

where v is the excluded-volume parameter, leading to the
standard estimate for the mean radius

R ∼ ã
( v
ã3

)ν/3
Ñν ∼

`P

sνP

(
L

a

)ν ( v
ã3

)ν/3
with ν = 3/5 being the Flory value for the swelling expo-
nent. We can compare this result with our variational pre-

diction R ∼ b
1/2
∞ Nν . Using the definitions (70, 61) for `P

and sP , respectively, we obtain for the excluded volume in-
teraction v/ã3 ∼ 1. This tells us that the excluded-volume
interactions between the polymer segments of length `P is
relevant and will lead to a swollen behavior. We therefore
do not expect another intermediate regime of Gaussian
behavior between the persistent and the swollen scaling
ranges, as was implicitly assumed in [13]. This conclu-
sion also seems to be confirmed by computer simulations,
which find a direct crossover from rod-like behavior to
swollen behavior (see, e.g., Figs. 8 and 9 of the first refer-

ence of [20]). Now using the relation `P ∼ b
1/2
∞ sνP we can

rewrite the radius as

R ∼ b1/2∞

(
L

a

)ν
·

Comparing this result now with the prediction from a non-
interacting worm-like chain model,

R ∼
√
`WLC
P L,

we see that the equivalent persistence length (if we ne-
glect the anomalous dependence on L which is usually not
probed in experiments) turns out to be `WLC

P ∼ b∞/a ∼
βνξ2ν/a. The exponent describing the relationship be-
tween the persistence length and the screening length ξ is
decreased from a value of two to an apparent value of 2ν,
thus being very close to unity. We mention that such an
exponent fits experimental data much better than the OSF
prediction `P ∼ ξ2. This apparent agreement might there-
fore come from carelessly identifying the screening-length
dependence of a mesoscopic quantity (such as the radius of
gyration) with the screening-length dependence of the per-
sistence length in a supposedly equivalent worm-like chain
model. In this respect, it is interesting to note that when
one uses the Gaussian exponent ν = 1/2 in the expression
for the WLC persistence length `WLC

P , one obtains a lin-
ear dependence on the screening length, `WLC

P ∼ ξ. Such
a linear dependence was indeed seen in variational proce-
dures which assumed a Gaussian, non-swollen behavior at
large length scales [13–15].

A second quantity which has been measured in com-
puter simulation is the average stretching of two neigh-
boring monomers [20], which is nothing but the aver-
age separation between two monomers and thus given by√

2db(1) ' a
√

1 + b2/a2. The effective stretching due to
a finite value of b2 has been clearly observed in refer-
ence [20].

5 Discussion

We presented a unified variational treatment of a single
polyelectrolyte chain. Performing a global scaling analysis,
we identify three different scaling regimes as a function
of the charge parameter β and the screening length ξ,
namely the Gaussian regime, where the chain is isotropic
on all length scales (Gaussian on short scales and swollen
on larger ones), the persistent regime, where the chain
is rod-like on small length scales (and swollen on larger
ones), and finally the Gaussian-persistent regime, where
the chain shows an intricate three-range scaling: Gaussian
on the smallest, persistent on intermediate, and swollen
on the largest length scales.

The persistence length agrees with the original Odijk
prediction in the persistent regime. In this regime, we
avoid the overstretching of the Gaussian chain by rescal-
ing the Kuhn length. In the Gaussian-persistent regime,
we obtain a logarithmic correction to the Khokhlov-
Khachaturian result [9], in agreement with general pre-
dictions by Li and Witten [10]. Finally, in the Gaussian
regime, the concept of a persistence length looses its mean-
ing. While changing the screening length, it is possible to
cross all three scaling regimes, which makes a fit of the per-
sistence length to a single power-law behavior impossible.
This agrees with recent variational calculations using the
uniform-expansion method, where indeed the exponent
describing the screening-length dependence of `P is differ-
ent from two close to the crossover regime β/a ≈ 1 [26].

Experiments usually infer the persistence length from
the scaling of the radius of gyration. We show that the
relation between the radius of gyration and the persis-
tence length is more complicated than suggested by the
worm-like-chain model. In fact, the contradicting scaling
behaviors for the persistence length as a function of the
screening length found in experiments and previous the-
ories might thus be reconcilable. In specific, we suggest
an explanation for the different observed screening-length
dependencies of the electrostatic persistence length in
variational theories [13–15], showing a linear dependence,
and theories based on a perturbational approach [9–12]
similar to the original Odijk calculation [6,7], predicting
a quadratic dependence: Artificially changing the large-
scale swollen behavior (characterized by a swelling expo-
nent ν > 1/2) to a Gaussian behavior (characterized by
ν = 1/2), we obtain a screening-length dependence of the
electrostatic persistence length which is a linear one, as
is observed for previous variational calculations where the
large scale behavior is assumed to be Gaussian [13–15].
This is confirmed by recent variational calculations which
include the effect of chain swelling at large length scales
and give a quadratic dependence of `P on the screening
length both for stiff and for flexible chains [26].

A new field-theoretic approach recently predicted a
distinct critical behavior at intermediate length scales,
showing a sublinear dependence of the persistence length
on the screening length [25], in apparent agreement with
MC simulations [20]. Although we do not think that the
sublinear behavior is established beyond doubt by the sim-
ulation results, the difficulties being mainly due to finite
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Z =

∫
Dr(s) exp

− d

2a2

N∫
0

ds ṙ2(s)

∫ Dϕ(r) exp

(
−
kBTε

2e2

∫
dr (∇ϕ(r))2

)

× exp

− i

A

N∫
0

ds ϕ(r(s)) +N+ log

(∫
dr e−iϕ(r)

)
+N− log

(∫
dr e+iϕ(r)

) (A.4)

size effects, we think that if such an intermediate critical
regime exists, it should be possible to obtain it with vari-
ational methods similar to the ones used in this paper;
investigations along these lines are currently on the way.

Finally, we note that the variational methods used
here, although shown to be exact for long-ranged forces,
are only approximate for screened electrostatic interac-
tions. As we have noted before, the present calculations
go beyond the ones in references [13–15], because we use
the most general Gaussian correlation kernel, which in-
cludes as a special case also the worm-like chain model.
The only point where our variational procedure fails is
the actual value of the swelling exponent, for which we
obtain ν = 2/3 in three dimensions [27], in contrast to
the more accurate Flory value ν = 3/5 [34]. However, we
do not attribute much importance to the actual value of
the swelling exponent, because the numerical difference
is small compared to the possible range of the exponent
which governs the screening-length dependence of the per-
sistence length. The advantage of the present method is
that it allows a closed and unified treatment of all the
different scaling ranges and regimes.

Appendix A: Debye-Hückel interaction

Consider a (positively charged) polyelectrolyte in presence
of small (negative and possibly positive) ions. Denoting by
N the number of monomers, by N+ and N− the number
of positive and negative ions in the solution, the partition
function for the system can be written as:

Z =

∫ ∏
i=1,··· ,N+

dri

∫ ∏
j=1,··· ,N−

dr′j

×

∫
Dr(s) exp{−H/kBT} (A.1)

where the Hamiltonian H is the sum of the polymer and
ions interaction energy:

H

kBT
=

d

2a2

N∫
0

ds ṙ2(s)

+
e2

8πεkBT

∫
dr

∫
dr′ρc(r)

1

|r− r′|d−2
ρc(r

′) (A.2)

where ε is the dielectric constant of the medium, e the
electric charge of an electron, and the charge density ρc(r)

is given by:

ρc(r) =
1

A

N∫
0

ds δ(r− r(s))

+
∑

i=1,··· ,N+

δ(r − ri)−
∑

i=1,··· ,N−

δ(r− r′i). (A.3)

The constant A denotes the separation between charges
along the chain. Performing a Gaussian transformation, it
is a simple matter to show that the partition function can
be rewritten as an integral over the polymer configurations
and the potential field ϕ:

see equation (A.4) above.

Assuming that in the relevant configurations the potential
is weak, i.e. ϕ� 1, we can expand (A.4) to second order
and obtain:

Z '

∫
Dr(s) exp

− d

2a2

N∫
0

ds ṙ2(s)

∫ Dϕ(r)

× exp

(
−
kBTε

2e2

∫
dr (∇ϕ(r))2 −

1

2
(c+ + c−)

∫
dr ϕ2(r)

)

× exp

− i

A

N∫
0

ds ϕ(r(s))− i(c+ − c−)

∫
dr ϕ(r)

 (A.5)

where c+ and c− are the concentration of positive and
negative ions.

The integration over the field ϕ can be performed ex-
actly, and yields (up to additive constants) the Debye-
Hückel form:

Z =

∫
Dr(s) exp

(
−

d

2a2

N∫
0

ds ṙ2(s)

−
e2

2εkBTA2

N∫
0

ds

N∫
0

ds′
exp(−|r(s)− r(s′)|/ξ)

|r(s) − r(s′)|d−2

)
(A.6)

with the Debye-Hückel length given by:

ξ =

√
kBTε

e2(c+ + c−)
· (A.7)
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Appendix B: Rescaling the Kuhn length

In this appendix we will show how to rescale the Kuhn
length in order to keep the distance between neighbor-
ing monomers fixed. For a Markov chain, the probability
to find a monomer n at position r depends only on the
position of the previous monomer n− 1 (or a finite num-
ber of ancestors). The conditional probability function is
denoted as P (r, n|r′, n − 1) = g(r − r′). It can easily be
shown that in the continuous limit (at large separations
and for long chains), the partition function of any Marko-
vian chain (i.e. with any “regular” function g(r)) can be
modeled by a universal functional integral of the form:

Z =

∫
Dr(s) exp

− d

2a2

N∫
0

ds ṙ2(s)

 . (B.1)

The parameter a in (B.1) is called the Kuhn length, and
is given by:

a2 =

∫
dr r2 g(r)∫
dr g(r)

· (B.2)

It is a measure of the effective monomer length. In pres-
ence of interactions however, the total length of the chain,
(which for a chain consisting of N rigid rods of length a0

should be equal to Na0) may vary from its expected value.
To circumvent this difficulty, we may employ a variant of
a method devised by Ha and Thirumalai [32]. One starts
from the discretized form of the partition function:

Z =

∫ N∏
i=1

dri

N∏
i=1

δ
(
|ri − ri+1| − a0

)
× exp{−H(ri)/kBT} (B.3)

and replaces the length constraint by a Lagrange multi-
plier λi, chosen so that the expectation value of 〈(ri −
ri+1)2〉 = a2

0 for any i = 1, . . . , N .

Z =

∫ N∏
i=1

dri exp
{
−

N∑
i=1

λi(ri − ri+1)2 −H(ri)/kBT
}

(B.4)

and λi is chosen so that

a2
0 = −

∂

∂λi
logZ. (B.5)

Following reference [32], we replace these N Lagrange mul-
tipliers by a unique Lagrange multiplier chosen so that:

Na2
0 =

N∑
i=1

〈
(ri − ri+1)2

〉
(B.6)

and thus write:

Z =

∫ N∏
i=1

dri exp
{
−

d

2a2

N∑
i=1

(ri − ri+1)2 −H(ri)/kBT
}
.

(B.7)

The factor d/2a2 is the Lagrange multiplier, chosen so
that:

2a4

d

∂

∂a2
logZ = Na2

0. (B.8)

Similarly, in the continuous limit, we may interpret the
Kuhn length a as a Lagrange multiplier chosen so that the
total length of the polymer is fixed to Na0. The partition
function of the chain reads:

Z =

∫
Dr(s) exp

− d

2a2

N∫
0

ds ṙ2(s)−H(r(s))

 (B.9)

with the Kuhn length a chosen according to equation
(B.8). This is the underlying concept of the rescaling of
the Kuhn length in Section 4.3, which leads to a finite
length of the chain.

We acknowledge useful discussions with T. Garel and J.-F.
Joanny.
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